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Abstract

The mechanical modelling proposed in Part I has led to the development of computational software allowing easy

design of avalanche nets. This tool provides for the evolving forces acting on several parts of the net as a function of the

snow situation. Some important numerical aspects are considered here, confirming the relevance of the proposed ap-

proach. To exemplify the capability of the software, a complete simulation is presented.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The purpose of this second part is to establish that the Discrete–Lagrangian approach is particularly well

adapted in the case of a snowpack in interaction with a flexible structure. The following results are inferred:
first, it is shown that both the loading applied to the structure by the snowpack and its distribution between

the poles and the anchors do not depend on the mechanical parameters (stiffness and viscosity) used in the

constitutive model; second, the relevance of using large snow elements is properly established; and finally, a

slight influence of the exponent aice is highlighted, justifying the adoption of linear constitutive modelling on

the micro level between two grains in contact.
2. Influence of the mechanical parameters

Constitutive equations obtained in Part I (Eqs. (3), (43), (44) and (45)), in the general non-linear case,

allow changes in the snowpack over time to be analysed. In order to exemplify the reasoning behind this
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using only explicit analytical constitutive equations, the case of a local linear visco-elastic model (Maxwell

fluid) is examined. In given meteorological conditions, the snowpack needs time to reach an equilibrium

state. During this transient period, forces acting on the structure may change. It was assumed that the

loading applied to the structure was maximal at the steady state. Once this state has been reached, the
forces acting on the structure no longer change and are used to design the structure for this given snow

situation. Hereafter, when a variable is considered at the steady state, the exponent (s) will be affixed.

At the steady state, Eq. (37) (Part I) can be rewritten as:
�rðsÞ
i ¼ 2giceCh M ðsÞ

i4 _eðsÞ12

�
þM ðsÞ

i5 _eðsÞ13

�
ði ¼ 1; . . . ; 6Þ ð1Þ
Components Mi4 and Mi5 only depend on function kðh;uÞ. From the definition of function kðh;uÞ, it
appears that this function only depends on the maximum value of ~rðh;uÞ which has never been reached: if

this maximum value is equal to the limit stress ~rl, kðh;uÞ ¼ 1, or kðh;uÞ ¼ 0.

From the expression (Eq. (41), Part I) ~rðh;uÞ ¼ C12 cos h sin h sin
2 uþ C13 cos h cosu sinu, even though

the two terms cos h sin h sin2 u and cos h cosu sinu have the opposite sign when u 2 ½p
2
; p�, we admit that

~rðh;uÞ is maximal when both C12 and C13 are also maximal. C12 and C13 are given by Eq. (42) (Part I),

which can be rewritten as:
C1i ¼ 2
N 0

b

Ng

qs

qice

� �
/ðkÞKice

Z t

0

e
Kice
gice
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As e1i is a time-rising function, C1i is also a time-rising function. Thus, C1i is maximal at the steady state.

Furthermore,
Cmax
1i ¼ CðsÞ

1i ¼ 2
N 0

b

Ng

qs

qice

� �
/ðkÞgice _eðsÞ1i ð3Þ
allowing the following expression of ~rmaxðh;uÞ to be inferred:
~rmaxðh;uÞ ¼ 2
N 0

b

Ng

qs

qice

� �
/ðkÞ � ð� � �Þ � cos h sin h sin2 u gice _eðsÞ12

� ��
þ cos h cosu sinu gice _eðsÞ13

� ��
ð4Þ
Thus, it appears that ~rmaxðh;uÞ, as well as kðh;uÞ and M ðsÞ, are explicitly a function of both terms: gice _eðsÞ12
and gice _eðsÞ13. This allows Eq. (1) to be rewritten as follows:
�rðsÞ
i ¼ 2Ch M ðsÞ

i4 gice _eðsÞ12; gice _eðsÞ13

� �
gice _eðsÞ12

�
þ � � �

� � � þM ðsÞ
i5 gice _eðsÞ12; gice _eðsÞ13

� �
gice _eðsÞ13

�
ði ¼ 1; . . . ; 6Þ

ð5Þ
But at the steady state, the balance of each snow element I , which is in contact with neither a node nor a

pole, is described by the following relationship, which is deduced from Eq. (48) (Part I):
X4
n¼1

T nðsÞ

I ¼ �qlVeg sinw ð6Þ
Furthermore, both Eqs. (51) and (52) (Part I) show that both _es12ðHÞ and _es13ðHÞ, at a given point H , are

linear combinations of the total velocities _uIH in direction~k1, where IH are snow elements belonging to the

vicinity of H . Likewise, both Eqs. (49) and (50) (Part I) express T nðsÞ
I as a linear combination of rðsÞ

12ðMnÞ
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and rðsÞ
13ðMnÞ, where points Mn are interpolation points in the vicinity of both nodes I and In. Thus, the

previous equation (5) makes it possible to establish that T nðsÞ
I is computed, in a general way, as an explicit

one-to-one function f n
I of the variables gice _u

ðsÞ
JI ;n , where _uðsÞJI ;n is the displacement ratio in direction ~k1 of ele-

ments JI;n belonging to the vicinity of I and In. In these conditions, Eq. (6) may be written in the following
form:
X4
n¼1

f n
I gice _u

ðsÞ
JI;n

� �
¼ �qlVeg sinw ð7Þ
If a snow element I is in contact with a closed section or a pole, the straightforward relation is obtained:
gice _u
ðsÞ
I ¼ 0 ð8Þ
Eqs. (7) and (8) make up a complete system whose solution gice _u
ðsÞ
I (if this solution exists) does not depend

on Kice, nor on gice. Likewise, from Eq. (5), as �rðsÞ
i is only a function of gice _eðsÞ12 and gice _eðsÞ13, it can be

deduced that �rðsÞ
i as well as any term T nðsÞ

I depend neither on Kice, nor gice. Thus, forces applied to the nodes

of the net or to the poles depend on neither Kice, nor gice.
This is a fundamental result, since it means that the forces existing in the different parts of the structure

do not depend on the constitutive parameters of the snowpack, but only on the physical parameters such as
the coordinate number or the number of grain bonds per unit of volume, as well as on the density profile of

the snowpack. As will be established in a further section, this feature substantially reduces the computation

time. For engineering purposes, this is of course of great practical interest. Nevertheless, it must be noted

that this result is not general but must be regarded as a mathematical consequence of the form of the

constitutive relations. We emphasize that this important result is rigorously unchanged if the exponent aice
is chosen different from 1. In the general non-linear case, forces acting within the structure will be a function

only of exponent aice, but not of Kice, nor of gice.
As outlined in Part I, a complex overall behaviour is obtained for the snowpack by taking a statistical

description of the fabrics into account. This statistical description lies essentially in both distribution

functions, namely fh and fu. Since failure may occur between two contact grains, functions fh and fu may

change. Hereafter, in order to exemplify using simplistic but meaningful modelling, these functions will be

considered to remain uniform. This is made possible by imposing a sufficiently large failure stress ~rl. This

oversimplification prevents the micro-structure of the medium from changing during the transient phase.

This is certainly not exact, but must be regarded as a first and useful approximation to investigate the

capability of the complete model. Interestingly, analytical investigations were performed on the influence of

the failure on grain bonds (Nicot, 2003).
3. A double time-step numerical scheme

3.1. Introduction

A general balance equation such as Eqs. (48) and (53) (Part I) can be written with the following general

formulation:
€ql ¼ f ðqm; _qmÞ ð9Þ
Each variable ql, which represents one of the location coordinates of a node of the net sheet or the dis-

placement of a snow element, is a function of a set of other variables generally denoted qm. These variables
may be the location coordinates of a node of the net sheet, the displacement of a snow element, as well as
the reaction force existing between a node of the net sheet and a snow element that are in contact. An
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explicit numerical algorithm was developed that introduces time sampling of general equations using the

explicit finite differences method. Thus, a set of explicit equations was obtained:
_qlðt þ sÞ ¼ _qlðtÞ þ sf qmðtÞ;
qmðtÞ � qmðt � sÞ

s

� �
ð10Þ
qlðt þ sÞ ¼ qlðtÞ þ s _qlðt þ sÞ ð11Þ
where s is the time step. At each time loop, the algorithm allows the displacements of every body to be

computed as a function of their previous positions. This numerical process continues until an equilibrium
state between the mantel and the structure is obtained.

3.2. Time sampling

The displacement of the snow element I in contact with a node J , is described by Eq. (48) (Part I). If this

element is not in contact with a node, Eq. (48) remains valid by setting RIðtÞ ¼ 0; if this element is in contact

with a pole, thus uIðtÞ ¼ 0 and RIðtÞ ¼ qlVeg sinwþ
P4

n¼1 T
n
I ðtÞ. In the most general case, the snow element

I is in contact with a closed section J . Time sampling on Eq. (48) (Part I), with time step ss, provides the
following equation at time t:
_uIðt þ ssÞ ¼ _uIðtÞ þ g sinwss þ
ss
qlVe

X4
n¼1

T n
I ðtÞ

 
� RIðtÞ

!
ð12Þ
uIðt þ ssÞ ¼ uIðtÞ þ ss _uIðt þ ssÞ ð13Þ
Likewise, time sampling on Eq. (53) (Part I), with time step sn, provides the following equations at time t:
_~X J ðt þ snÞ ¼ _~X J ðtÞ þ g sinwsn þ
sn
m

X6
j¼1

~F j
J ðtÞ

 
þ RIðtÞ~k1

!
ð14Þ
~X J ðt þ snÞ ¼ ~X J ðtÞ þ sn
_~X J ðt þ snÞ ð15Þ
The numerical stability of all equations (12)–(15) requires choosing time steps ss and sn that are small

enough. Denoting s�s and s�n the values of ss and sn, which ensure numerical stability, the usual values for

Youngs modulus E of steel and Youngs modulus Kice induce an important shift between s�s and s�n: s
�
n is very

small compared to s�s . Making use of the fact that at the steady state the forces acting within the structure

are not a function of Kice, nor of gice, this shift is all the greater since a very small Kice can be chosen.

Imposing sn ¼ ss ¼ s�n, allows us to consider the interaction between the snowpack and the structure at a

given time t. It must be noted that this choice is likely to induce a time-consuming computation. During the
period between t and t þ s�s , the snowpack is strained, and thus it directs a displacement of the nodes of the

structure. As dynamic effects can be neglected, the mechanical response of the structure would not have

been modified if the strain within the snowpack had occurred over a shorter period s�n between t and t þ s�n.
This condition can be written from Eq. (55) (Part I) as follows:
s�s _uIðtÞ ¼ s�n
_~X J ðtÞ �~k1 ð16Þ
In these conditions, both positions and velocities of each node at time t þ s�s would have been unchanged if

the following process had taken place between t and t þ s�s :
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• ~X J ðt þ s�nÞ and
_~X Jðt þ s�nÞ are computed by Eqs. (14) and (15), taking Eq. (16) into account.

• The following equalities are imposed:
_~X J t
�
þ s�s

�
¼ _~X J t

�
þ s�n

�
ð17Þ

~X J t
�
þ s�s

�
¼ ~X J t

�
þ s�n

�
ð18Þ
Thus, the set of Eqs. (12)–(15) can be rewritten as follows:
_uI t
�
þ s�s

�
¼ _uIðtÞ þ g sinws�s þ

s�s
qlVe
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n¼1

T n
I ðtÞ

 
� RIðtÞ

!
ð19Þ

uI t
�
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�
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�
þ s�s

�
ð20Þ
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m
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~X J t
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�
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�
þ s�s

�
ð22Þ
The set of Eqs. (19)–(22) constitutes a numerical scheme, which introduces two time steps: s�s and s�n.
However, the period for calculating new positions of each body is equal to s�s , optimising the computation

time. Typically, for the simulations described in the last section, the computation time can be reduced by

approximately a factor of 100, from 4 days to less than a hour.

3.3. A complete equation system

The kinematic condition given by Eq. (16) allows the reaction force RIðtÞ to be derived:
RIðtÞ ¼
1

s�
2

s
qlVe

þ s�
2

n
m

s�s _uIðtÞ
(

þ s�n
_~X J ðtÞ �~k1 þ

s�
2

s

qlVe

X4
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I ðtÞ þ � � �

� � � þ g sinw s�
2

s

�
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2

n

�
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2

n

m

X6
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~F p
J ðtÞ �~k1

) ð23Þ
The set of Eqs. (19)–(23) provides the position of each snow element I , as well as the position of each node
J , to be computed explicitly at any time. If a node I (resp. element J ) is not in contact with an element J
(resp. node I), both Eqs. (19) and (20) (resp. (21) and (22)) remain relevant by setting RIðtÞ equal to zero.

Once an equilibrium state between the structure and the snowpack is obtained, terms RIðtÞ, T n
I ðtÞ and ~X J ðtÞ

remain constant, and thus the final forces acting in different parts of the structure can be computed.
4. Optimal size of snow elements

4.1. Influence of the size of snow elements

The numerical algorithm has led to the development of computational software so that avalanche nets
can be easily designed as a function of the upstream snow conditions. It is possible to simulate several

successive snow scenarios: by changing the number of layers, their height, their density or their physical
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parameters, snowfalls or melting with settlement can be simulated. Thus, this tool allows engineers to

predict the mechanical behaviour of the structure during usual or unusual climatic situations.

Hereafter, the influence of the magnitude of the snow elements on the numerical solution will be

analysed. A very simple structure is used, composed of a square panel of net, whose lateral sides are fixed to
a post, with the two others free. In order to simplify the problem, it is assumed that the snowpack is

vertically disposed above the net, which is in a horizontal configuration (Fig. 1). The snowpack is retained

not only by the net sheet (at the nodes of the mesh), but also by the posts (because of the gliding between

the snow elements and the posts). The four vertical sides of the snowpack are assumed to be free. The

snowpack, whose density is equal to 500 kg/m3, is 0.7 m high by 0.7 m wide and 20 m long. The net mesh

comprises 49 nodes. Several simulations were performed by changing the magnitude of the snow elements.

For these simulations, it was assumed that the width and the height were equal:
we ¼ he ¼ x ð24Þ

and a set of rising values of x was computed. It is meaningful to define the dimensionless ratio - ¼ l0=x,
where l0 ¼ 0:1 m is the usual size of the net mesh. Typically, values of - belonging to the range [5–200] were

used. Above - ¼ 200 (x ¼ 0:005 m), the computation is excessively time-consuming; below - ¼ 5

(x ¼ 0:02 m), the size of elements is likely to be too large with regard to the size of the net mesh. Fur-

thermore, as mentioned in Part I, x ¼ 0:02 m can be regarded as the smallest size of snow elements, which

ensures that the RVE is entirely contained into the volume of a snow element.

As presented in Part I, the interaction between the snowpack and the net sheet is obviously not reduced

to a single point. The wires that comprise the net sheet have a cross-section that should not be ignored.
Thus, a closed section Sc is associated with each node of the net mesh. An initial section is considered,

taking only the mean cross-section of the wires into account; this section is denoted S0. As a first step, it is

assumed that S0 and Sc are equal. The following paragraph will be devoted to the influence of the value of

Sc. Likewise, the exponent aice was chosen equal to 1. A further parametric analysis will make it possible to

assess the influence of the exponent aice.
To compare the results of the several simulations, we considered the resultant force Fpole applied to the

two horizontal poles and the resultant force Fnet accounting for all the reaction forces acting on the different

nodes of the net. Fig. 2 shows the changes in Fnet and Fpole as a function of -. It can be observed that both
Vertical
snow elements

Horizontal
poles

Mesh

Fig. 1. Geometrical configuration of the simplistic model.
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Fnet and Fpole change substantially while - is lower than 50 (which corresponds, as l0 ¼ 0:1, to x > 0:002 m).

When - is greater than 50, the forces acting on the anchors or on the poles remain approximately constant.

Thus, the asymptotic value can be regarded as the solution to the problem. Nevertheless, it must be noted

that the changes in Fnet and Fpole remain lower than 10% when - increases from 5 to 200. Values obtained

when - ¼ 5 provide a rather good approximation of the solution. Furthermore, this value of - seems to be
a good compromise for optimising computation time. In what follows, further simulations will be per-

formed setting - ¼ 5, which corresponds to x ¼ 0:02 m.

4.2. Influence of the permeability of the net sheet

The influence of the closed section will now be analysed. A current section Sc is considered with Sc ¼ aSS0
where the parameter aS belongs to the range [0.1–2]. The interaction between the snow elements and the

wires is modelled by considering that elements which are located upstream of a closed section, associated
with each node of the wire mesh, are blocked; the closed section accounts for the longitudinal section of the

adjoining wires. Of course, as mentioned in Part I, this is a simplistic description of what actually occurs.

Thus, it seems meaningful to consider that the parameter aS can be different from the value 1: the range

[0.1–2] is therefore investigated. For instance, in the previous section, aS was chosen equal to 1. The pre-

vious simplistic model, described in Fig. 1, is considered again, with x ¼ 0:001 m (- ¼ 100). The changes in

the resultant force Fpole applied to the two poles as a function of parameter aS are analysed. As depicted in

Fig. 3, a strong influence of parameter aS is observed. This influence is more important when parameter aS
is small (lower than 0.5). For the parameter aS belonging to the range [0.5–2], a relative variation of 25%
around the value obtained with aS ¼ 1 is observed. This feature has two consequences:

• It seems to be realistic to limit the range of parameter aS to [0.5–2], but it must be noted that this choice

can be risky. In these conditions, it seems relevant to use the central value aS ¼ 1, which corresponds to

the mean value of Fpole. Consequently, an uncertainty of around 25% must be associated with the final

result.

• As shown in Fig. 2, the error induced by the size of the snow elements does not exceed 10% if - is not

lower than 5. This error is lower than the uncertainty due to parameter aS . A greater value of - would
improve the precision of the result, but the substantial gain in precision, which requires time-consuming
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computations, would be counterbalanced by a excessively great uncertainty (25%) due to aS , which is

difficult to reduce. Because forces acting in the structure dramatically increase when - is lower than

5, a value of - lower than 5 would be likely to induce an error greater than the initial 25%. Thus, it

can be concluded that the choice of - ¼ 5 appears to be a good compromise for defining the size of

the snow elements.

In later sections, values - ¼ 5 and aS ¼ 1 will be adopted.

4.3. Influence of the exponent aice

Further simulations were carried out with the exponent aice varying in the range of [0.1–5]. As discussed

in Part I, the lack of knowledge on the bond-scale structure of the ice makes it difficult to calibrate the
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exponent aice. Nevertheless, it seems reasonable to consider that aice can vary in the range of [1–5] (Gag-

liardini and Meyssonnier, 1999). In particular, in Glen�s law for creep, aice � 3. Fig. 4 shows that the smaller

this exponent is, the greater the influence of aice is, typically aice < 1. Furthermore, denoting F pole the value

of Fpole when aice ¼ 1, it must be noted that the relative variation of Fpole, which can defined as
Fpole � F pole

		 		=F pole, does not exceed 10% when aice varies in the usual range of [1–5]. This is an interesting

result; indeed, in as much as it can be assumed that no failure can occur inside grain bonds, this result

establishes that the influence of the exponent aice remains very small, and lower than the uncertainty caused

by other parameters such as aS . This justifies using a linear local constitutive law to model the mechanical

interaction between a snowpack and a flexible structure. In this kind of problem, considering the

assumptions used to describe the macroscopic strain field of the snowpack, more complex local constitutive

models are not likely to bring a significant improvement in the final result. Thus, for the further simula-

tions, values - ¼ 5, aS ¼ 1 and aice ¼ 1 will be adopted.
5. First elements of validation

During the winter of 1999–2000, several snow avalanche net structures were monitored in the French

Alps. Force sensors were mounted in order to record the changes in the forces acting on the upstream
anchors. The analysis of the experimental results showed that those at the Flaine (Haute–Savoie) site

provided the most reliable and useable results; the data from this site were consequently chosen for analysis.

In what follows, the situation observed on 12 April 2000 is considered. The height of the snow mantel was

equal to 3.58 m, and the average density was equal to 560 kg/m3. These values were measured 4 m upstream

from the poles. Fig. 5 shows the geometrical description of the structure.

To perform the numerical simulation, a single-layer snowpack was studied, with N 0
b ¼ 1000 and �nc ¼ 5.

The snow elements were 0.02 m high by 0.02 m wide by 11 m long. The friction angle us between the soil and

the snowpack was chosen equal to 20�. A comparison between experimental and numerical values of the
forces acting on the upstream anchors is presented in Table 1. A rather good agreement between experi-

mental and numerical values can be seen for the both internal and pre-external anchors (see Fig. 7, Part I).

However, a large divergence must be noted for the external anchors. Nevertheless, the small experimental

value recorded in the external anchor looks suspicious. Generally, the maximal force is located in the
11 m

4 m38=ψ ˚12 m

Fig. 5. Geometrical configuration of the structure.

Table 1

Comparison of experimental and numerical results

Internal anchor Pre-external anchor External anchor

Experimental result (kN) 95 111 67

Numerical result (kN) (free lateral planes) 110 109 153

Numerical result (kN) (blocked left lateral plane) 106 102 123
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external anchor (Margreth, 1995). This divergence is partly caused by the strong irregularities in topography

near the external anchor: the presence of a rocky crest is likely to influence the stabilization of the snowpack.

Indeed, the results are slightly better while the lateral plane is blocked. The next monitoring of a structure at

the Tignes site (Savoie, France), which is set up in a very smooth and regular area, should provide further
valuable experimental data beginning in 2004. At present, the good agreement for both the internal and the

pre-external anchors should be considered as a first element of validation.

The distribution of the pressure applied to an external pole is shown in Fig. 6. It can be noted that the

shape of this distribution is approximately linear from the ground surface up to 2 m in height. Above this

height, the pressure increases strongly. Interestingly, the uniform pattern of pressure applied to the poles,

required by the Swiss Guidelines (Margreth, 1990) for designing protective barriers, is not confirmed by the

proposed numerical simulations. Unfortunately, the poles were not monitored, so that this numerical result

cannot be compared to the experimental data. As the distribution of the pressure has a substantial influence
on the poles� bending moment, it strongly governs the design of these poles. Further experimental inves-

tigations will therefore be carried out to make such data available in the future. Fig. 7 shows the dis-
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placement field of the snowpack in several planes parallel to the ground surface: at a 0.25 m depth, a 1.25 m

depth and a 2.25 m depth. The displacements decreased with the depth and were equal to zero behind the

poles. Of course, it must be noted that this displacement field results from the assumptions concerning the

kinematics of the snow elements: in particular, they are perfectly rigid in compression, so that the dis-
placement field does not depend on x1.
6. An example of an advanced simulation

In order to show the capabilities of the computational software, a complete simulation will be described

in this section. Typical successive meteorological events are explained. The structure is composed of a line

of four poles. The height of the net sheet is equal to 4 m. Each pole, which is hollow, has a diameter of 168.3

mm and a wall thickness of 4.5 mm. The distance between two adjoining poles is 3.50 m. The slope above

the structure is 45�. The geometrical settings of the structure are described in Fig. 8.

As depicted in Fig. 9, two successive snow situations were analysed. First, a three-layer mantel was

considered, in which a recent snow layer and an old dense snow layer are separated by a thin layer. This

situation is typical of February in the French Alps. Second, a two-layer mantel was examined, whose snow
layers were very dense. This is the usual spring situation: the snowpack has been subjected to the effect of

melting and settlement. Even if the height of the mantel is lower in the second case, the total weight of the

mantel remains unchanged. Although this feature may not occur, it was adopted in order to examine the

sole influence of the height of the mantel.

To perform the two numerical simulations, the number of grain bonds in a RVE was fixed at 1000. The

snow elements measured 0.02 m high by 0.02 m wide by 25 m long. The friction angle us between the soil

and the snowpack was chosen equal to 20�. During densification, the coordination number rises; thus, this

parameter should vary with layers. Nevertheless, for the sake of simplicity, a simplistic choice of �nc was
25 m

4 m45=ψ  ˚14 m

Fig. 8. Geometrical configuration of the structure.
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Table 2

Forces acting in the anchors: comparison between February and April situations

Forces (kN)

Internal anchor Pre-external anchor External anchor

February situation 261 260 298

April situation 242 240 285
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made: in the two upper layers of the first mantel (February), �nc ¼ 3; in the other layers, in February or
April, as the density is greater than 400 kg/m3, �nc ¼ 5 (Brown and Edens, 1991).

Table 2 compares the forces acting in the anchors in the course of the two situations. It can be observed

that the forces are slightly greater in the first situation. Even if the weight of the mantel is identical for

the two scenarios, the first loading induces the strongest forces. That means that the forces acting on the

anchors are a function of the weight of the mantel, W ¼
Pnl

l¼1 qlwhlL, but also of the total height of the

mantel, H ¼
Pnl

l¼1 hl. This can be expressed as follows:
FaðiÞ ¼ fiðW ;HÞ ð25Þ
where FaðiÞ is the resulting force acting in the anchor �i�, and fi is a non-linear operator that depends on the

position of the anchor (external, pre-external or internal anchor). Implicitly, this operator takes the final

strained geometrical configuration of the structure into account. The non-linearity of fi is mainly caused by

the geometrical non-linearities occurring in the course of the deformation of the structure.
Recent research (Gay and Nicot, 2001) has shown that the operator fi can be assessed using the fol-

lowing straightforward power law expression:
FaðiÞ ¼ aW bHc ð26Þ
with b � 1 and 0 < c < 1.

For the case considered, Fað1Þ ¼ 1:64W H 0:21 for both the internal and the pre-external anchors, and

Fað2Þ ¼ 2:02W H 0:12 for the external anchors.
The comparison of the pressure applied to the poles is illustrated in Fig. 10. First, the curve corre-

sponding to the February situation shows that the presence of a thin light layer induces a strong decrease in

the pressure. Thus, because of the influence of the layering of the mantel, it is of great importance to have a
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physical description that is as accurate as possible. Furthermore, it can be observed that the pressure

corresponding to the April situation is the greater of the two. Thus, the loading applied by a snowpack to

the poles seems to depend substantially on the height of the mantel. During the settlement of the snow

cover, if the total weight of the mantel remains unchanged, the pressure applied to the poles is likely to
increase dramatically. This makes it even more important to perform several simulations with different

successive realistic snow conditions in order to determine the most severe situation. Taking this situation

into account will provide an effective design of the protective structure. As depicted in Fig. 10, strong

oscillations occur in the pressure profile. These oscillations seem to be related to the discrete representation

of both the wire net and the snowpack. As the interaction between both the wire mesh and the snow

elements is modelled using a powerful kinematic condition, the velocity field within the snowpack is sub-

stantially discontinuous. As the pressure applied to the poles is computed from the velocity of the snow

elements which are in contact with those located upstream from the poles, the discontinuous nature of the
velocity field then directs oscillations in the pressure profile. Actually, the velocity field within the snowpack

is likely to be smoother, and discontinuities do not occur, except perhaps in the vicinity of the physical

discontinuities of the snowpack (interfaces between adjoining layers). So large oscillations therefore result

from the nature of the modelling system, but are not likely to correspond to a physical phenomenon.

Nevertheless, the simulated pressure profile brings some valuable mean information, which can be sufficient

to design the structure: further mathematical treatment (a filtering process) can be used in order to regu-

larize the profile.
7. Concluding remarks

The actual complexity that engineers face in assessing the loading applied by a snow mantel requires a

specific research program that will attempt to develop a coupled mechanical analysis of both the structure

and the snow mantel by scientifically analyzing the interaction between the snow mantel and the structure.

This paper has proposed an original approach based on the discrete element method (Cundall and Roger,

1992) to model both the structure and the snowpack. Because of the particular form of the displacement

field within the snowpack, it has been shown that this type of model was well adapted. As the equilibrium

state between the snowpack and the structure does not depend on the mechanical parameters used in the
constitutive model, a useful double time-step numerical scheme was developed, allowing computation time

to be greatly optimized.

This complete modelling was integrated into computational software, allowing avalanche net structures

to be designed according to snow conditions. Thus, various snow conditions, which can be related to

meteorological scenarios, can be simulated.

Finally, the forces acting on a protective structure can be understood as the final result of a chain

gathering complex phenomena: (i) snowfalls; (ii) physical changes in the snowpack in interaction with the

climatic conditions, the ground surface, and a flexible structure; (iii) the mechanical behaviour of a flexible
structure. As a direct experimental study of the snowpack remains a very difficult task, a structure for

indirectly obtaining information related to the snowpack appears to be extremely useful. In these condi-

tions, the net structure functions as a macroscopic but relevant sensor. This paper presents the first step of

this original approach.
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