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Abstract

The mechanical modelling proposed in Part I has led to the development of computational software allowing easy
design of avalanche nets. This tool provides for the evolving forces acting on several parts of the net as a function of the
snow situation. Some important numerical aspects are considered here, confirming the relevance of the proposed ap-
proach. To exemplify the capability of the software, a complete simulation is presented.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The purpose of this second part is to establish that the Discrete—Lagrangian approach is particularly well
adapted in the case of a snowpack in interaction with a flexible structure. The following results are inferred:
first, it is shown that both the loading applied to the structure by the snowpack and its distribution between
the poles and the anchors do not depend on the mechanical parameters (stiffness and viscosity) used in the
constitutive model; second, the relevance of using large snow elements is properly established; and finally, a
slight influence of the exponent a. is highlighted, justifying the adoption of linear constitutive modelling on
the micro level between two grains in contact.

2. Influence of the mechanical parameters

Constitutive equations obtained in Part I (Egs. (3), (43), (44) and (45)), in the general non-linear case,
allow changes in the snowpack over time to be analysed. In order to exemplify the reasoning behind this
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using only explicit analytical constitutive equations, the case of a local linear visco-elastic model (Maxwell

fluid) is examined. In given meteorological conditions, the snowpack needs time to reach an equilibrium

state. During this transient period, forces acting on the structure may change. It was assumed that the

loading applied to the structure was maximal at the steady state. Once this state has been reached, the

forces acting on the structure no longer change and are used to design the structure for this given snow

situation. Hereafter, when a variable is considered at the steady state, the exponent (s) will be affixed.
At the steady state, Eq. (37) (Part I) can be rewritten as:

_ancech( 5>48 IZ"‘]‘4(5 58) ) (lzl,,6) (1)

Components M;; and M;s only depend on function A(6, ). From the definition of function A(0, ¢), it
appears that this function only depends on the maximum value of (0, ¢) which has never been reached: if
this maximum value is equal to the limit stress 6;, A(0, @) = 1, or A(0, ¢) = 0.

From the expression (Eq. (41), Part I) (0, ¢) = Cy, cos 0sin 0sin” ¢ + Cy3 cos 0 cos ¢ sin ¢, even though
the two terms cos 0sin 0sin® ¢ and cos 0 cos ¢ sin ¢ have the opposite sign when ¢ € [5; 7], we admit that
(6, ¢) is maximal when both Cj, and C); are also maximal. C}, and C); are given by Eq. (42) (Part 1),
which can be rewritten as:
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As ); is a time-rising function, Cj; is also a time-rising function. Thus, C); is maximal at the steady state.
Furthermore,
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allowing the following expression of 6™*(0, ¢) to be inferred:
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Thus, it appears that 6™**(0, @), as well as A(0, ) and MO , are explicitly a function of both terms: nlce(:
and 7,,,é® 3. This allows Eq. (1) to be rewritten as follows:
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(5)
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But at the steady state, the balance of each snow element 7, which is in contact with neither a node nor a
pole, is described by the following relationship, which is deduced from Eq. (48) (Part I):

4
) .

> 1 = —pVegsiny (6)

n=1

Furthermore, both Egs. (51) and (52) (Part I) show that both EIZ(H ) and ?13(H ), at a given point H, are
linear combinations of the total velocities i, in direction k;, where I,; are snow elements belonging to the

vicinity of H. Likewise, both Egs. (49) and (50) (Part I) express T,”(S)

as a linear combination of FIZ(M,,)
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and ¢®)3(M,), where points M, are interpolation points in the vicinity of both nodes 7 and I,. Thus, the
previous equation (5) makes it possible to establlsh that T” is computed, in a general way, as an explicit
one-to-one function f;' of the variables nlceu J, , where u§ is the displacement ratio in direction k; of ele-
ments J;,, belonging to the vicinity of / and 1,. In these condltlons Eq. (6) may be written in the following

form:

4
A (niceit(i_),,) = —p,V.gsiny (7)
n=1
If a snow element / is in contact with a closed section or a pole, the straightforward relation is obtained:

nlceul 0 (8)

Egs. (7) and (8) make up a complete system whose solution nwea?) (if this solution exists) does not depend

on K., nor on ;.. Likewise, from Eq. (5), as 61(-)

is only a function of #,.£®), and #7;,.£®)3, it can be
deduced that 655) as well as any term T,”(S) depend neither on K, nor #;.. Thus, forces applied to the nodes
of the net or to the poles depend on neither K, nor #;..

This is a fundamental result, since it means that the forces existing in the different parts of the structure
do not depend on the constitutive parameters of the snowpack, but only on the physical parameters such as
the coordinate number or the number of grain bonds per unit of volume, as well as on the density profile of
the snowpack. As will be established in a further section, this feature substantially reduces the computation
time. For engineering purposes, this is of course of great practical interest. Nevertheless, it must be noted
that this result is not general but must be regarded as a mathematical consequence of the form of the
constitutive relations. We emphasize that this important result is rigorously unchanged if the exponent o,
is chosen different from 1. In the general non-linear case, forces acting within the structure will be a function
only of exponent v, but not of K., nor of #..

As outlined in Part I, a complex overall behaviour is obtained for the snowpack by taking a statistical
description of the fabrics into account. This statistical description lies essentially in both distribution
functions, namely f; and f,. Since failure may occur between two contact grains, functions fj and f,, may
change. Hereafter, in order to exemplify using simplistic but meaningful modelling, these functions will be
considered to remain uniform. This is made possible by imposing a sufficiently large failure stress ¢,. This
oversimplification prevents the micro-structure of the medium from changing during the transient phase.
This is certainly not exact, but must be regarded as a first and useful approximation to investigate the
capability of the complete model. Interestingly, analytical investigations were performed on the influence of
the failure on grain bonds (Nicot, 2003).

3. A double time-step numerical scheme
3.1. Introduction

A general balance equation such as Eqgs. (48) and (53) (Part I) can be written with the following general
formulation:

él :f(qrmqm) (9)

Each variable ¢;, which represents one of the location coordinates of a node of the net sheet or the dis-
placement of a snow element, is a function of a set of other variables generally denoted ¢,,. These variables
may be the location coordinates of a node of the net sheet, the displacement of a snow element, as well as
the reaction force existing between a node of the net sheet and a snow element that are in contact. An
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explicit numerical algorithm was developed that introduces time sampling of general equations using the
explicit finite differences method. Thus, a set of explicit equations was obtained:

aile+ ) = ) + Tf(qm(t%w) (10)

T

@it +7) = q(t) +7q,(t + 1) (11)

where 7 is the time step. At each time loop, the algorithm allows the displacements of every body to be
computed as a function of their previous positions. This numerical process continues until an equilibrium
state between the mantel and the structure is obtained.

3.2. Time sampling

The displacement of the snow element 7 in contact with a node J, is described by Eq. (48) (Part I). If this
element is not in contact with a node, Eq. (48) remains valid by setting R;(¢) = 0; if this element is in contact
with a pole, thus u;(¢1) = 0 and R;(¢) = p,V,gsiny + ijl T7(¢). In the most general case, the snow element
I is in contact with a closed section J. Time sampling on Eq. (48) (Part I), with time step t,, provides the
following equation at time ¢:

i+ 1,) = i (1) + gsin

o (le T() - R1<t)> (12)
u(t+ 15) = uy(¢) + e, (t + 715) (13)

Likewise, time sampling on Eq. (53) (Part I), with time step t,, provides the following equations at time ¢:

)éj(t—i_fn):)?J(t)—i_gSinlprn (i +R1 > (14)
Xt +1) =X, 00) + 0kt + 1) (15)

The numerical stability of all equations (12)—(15) requires choosing time steps 7, and 7, that are small
enough. Denoting ¥ and 7} the values of 7, and t,, which ensure numerical stability, the usual values for
Youngs modulus E of steel and Youngs modulus K;.. induce an important shift between t} and t': 7} is very
small compared to 7;. Making use of the fact that at the steady state the forces acting within the structure
are not a function of Kj., nor of #,, this shift is all the greater since a very small K. can be chosen.

Imposing 7, = 7, = 7, allows us to consider the interaction between the snowpack and the structure at a
given time z. It must be noted that this choice is likely to induce a time-consuming computation. During the
period between ¢ and ¢ + 17, the snowpack is strained, and thus it directs a displacement of the nodes of the
structure. As dynamic effects can be neglected, the mechanical response of the structure would not have
been modified if the strain within the snowpack had occurred over a shorter period 7 between ¢ and ¢ + ;.
This condition can be written from Eq. (55) (Part I) as follows:

Cin(t) = X, (1) - K (16)

In these conditions, both positions and velocities of each node at time ¢ + 77 would have been unchanged if
the following process had taken place between ¢ and ¢ + 7
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. )?J(t + %) and )_(;J(t + 7¢) are computed by Eqgs. (14) and (15), taking Eq. (16) into account.
e The following equalities are imposed:

Xo(t+7) =X, (t+1) (17)

X,(t+7)=X,(t+1) (18)
Thus, the set of Egs. (12)—(15) can be rewritten as follows:

4
n=

PIACE R,<r>> (19)

. . . . . T,
iy (t+1) =iy(t) + gsinyt, + <

pre =1
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= 3 . L >
X, (t+7) =X,(t) + gsinyt, +%" (Z (1) +R1(t)k1> (21)
=1
X,(t+1) :)?J(t)+f;)?J(t+rj) (22)

The set of Egs. (19)-(22) constitutes a numerical scheme, which introduces two time steps: i and .
However, the period for calculating new positions of each body is equal to 1}, optimising the computation
time. Typically, for the simulations described in the last section, the computation time can be reduced by
approximately a factor of 100, from 4 days to less than a hour.

3.3. A complete equation system

The kinematic condition given by Eq. (16) allows the reaction force R,;(¢) to be derived:

1 . S - &
Ri(t) = = i () + T X, () T + = D T (0) + -+
Ty _~_TL pre n=1
Ve m (23)
2 6
s (7 -5 ) -2 3 5(z>-k1}
; m
=1

The set of Egs. (19)—(23) provides the position of each snow element 7, as well as the position of each node
J, to be computed explicitly at any time. If a node 7 (resp. element J) is not in contact with an element J
(resp. node 1), both Egs. (19) and (20) (resp. (21) and (22)) remain relevant by setting R;(¢) equal to zero.
Once an equilibrium state between the structure and the snowpack is obtained, terms R, (), 7/'(r) and X, ()
remain constant, and thus the final forces acting in different parts of the structure can be computed.

4. Optimal size of snow elements
4.1. Influence of the size of snow elements
The numerical algorithm has led to the development of computational software so that avalanche nets

can be easily designed as a function of the upstream snow conditions. It is possible to simulate several
successive snow scenarios: by changing the number of layers, their height, their density or their physical
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parameters, snowfalls or melting with settlement can be simulated. Thus, this tool allows engineers to
predict the mechanical behaviour of the structure during usual or unusual climatic situations.

Hereafter, the influence of the magnitude of the snow elements on the numerical solution will be
analysed. A very simple structure is used, composed of a square panel of net, whose lateral sides are fixed to
a post, with the two others free. In order to simplify the problem, it is assumed that the snowpack is
vertically disposed above the net, which is in a horizontal configuration (Fig. 1). The snowpack is retained
not only by the net sheet (at the nodes of the mesh), but also by the posts (because of the gliding between
the snow elements and the posts). The four vertical sides of the snowpack are assumed to be free. The
snowpack, whose density is equal to 500 kg/m?, is 0.7 m high by 0.7 m wide and 20 m long. The net mesh
comprises 49 nodes. Several simulations were performed by changing the magnitude of the snow elements.
For these simulations, it was assumed that the width and the height were equal:

We =h, = (24)

and a set of rising values of w was computed. It is meaningful to define the dimensionless ratio w = /y/w,
where /, = 0.1 m is the usual size of the net mesh. Typically, values of @ belonging to the range [5-200] were
used. Above @w =200 (w = 0.005 m), the computation is excessively time-consuming; below @ =15
(w = 0.02 m), the size of elements is likely to be too large with regard to the size of the net mesh. Fur-
thermore, as mentioned in Part I, o = 0.02 m can be regarded as the smallest size of snow elements, which
ensures that the RVE is entirely contained into the volume of a snow element.

As presented in Part I, the interaction between the snowpack and the net sheet is obviously not reduced
to a single point. The wires that comprise the net sheet have a cross-section that should not be ignored.
Thus, a closed section S, is associated with each node of the net mesh. An initial section is considered,
taking only the mean cross-section of the wires into account; this section is denoted Sj. As a first step, it is
assumed that Sy and S are equal. The following paragraph will be devoted to the influence of the value of
S.. Likewise, the exponent o;,. was chosen equal to 1. A further parametric analysis will make it possible to
assess the influence of the exponent o;.

To compare the results of the several simulations, we considered the resultant force F,o. applied to the
two horizontal poles and the resultant force F accounting for all the reaction forces acting on the different
nodes of the net. Fig. 2 shows the changes in F, and F, . as a function of @. It can be observed that both

Vertical
snow elements

% / .
7 7 7 Horizontal
S S

Ay a poles
/

B R R

A )

S

A 7

A

Fig. 1. Geometrical configuration of the simplistic model.
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Fig. 2. Changes in the forces acting on the structure as a function of .

Fe and Fyo change substantially while @ is lower than 50 (which corresponds, as /o = 0.1, to @ > 0.002 m).
When @ is greater than 50, the forces acting on the anchors or on the poles remain approximately constant.
Thus, the asymptotic value can be regarded as the solution to the problem. Nevertheless, it must be noted
that the changes in F,e and Fj,e remain lower than 10% when @ increases from 5 to 200. Values obtained
when @ = 5 provide a rather good approximation of the solution. Furthermore, this value of @ seems to be
a good compromise for optimising computation time. In what follows, further simulations will be per-
formed setting @ = 5, which corresponds to w = 0.02 m.

4.2. Influence of the permeability of the net sheet

The influence of the closed section will now be analysed. A current section S, is considered with S. = asS
where the parameter as belongs to the range [0.1-2]. The interaction between the snow elements and the
wires is modelled by considering that elements which are located upstream of a closed section, associated
with each node of the wire mesh, are blocked; the closed section accounts for the longitudinal section of the
adjoining wires. Of course, as mentioned in Part I, this is a simplistic description of what actually occurs.
Thus, it seems meaningful to consider that the parameter ag can be different from the value 1: the range
[0.1-2] is therefore investigated. For instance, in the previous section, ag was chosen equal to 1. The pre-
vious simplistic model, described in Fig. 1, is considered again, with w = 0.001 m (@ = 100). The changes in
the resultant force F,e applied to the two poles as a function of parameter ag are analysed. As depicted in
Fig. 3, a strong influence of parameter as is observed. This influence is more important when parameter ag
is small (lower than 0.5). For the parameter ay belonging to the range [0.5-2], a relative variation of 25%
around the value obtained with ag = 1 is observed. This feature has two consequences:

o It seems to be realistic to limit the range of parameter ag to [0.5-2], but it must be noted that this choice
can be risky. In these conditions, it seems relevant to use the central value ag = 1, which corresponds to
the mean value of F,,.. Consequently, an uncertainty of around 25% must be associated with the final
result.

e As shown in Fig. 2, the error induced by the size of the snow elements does not exceed 10% if @ is not
lower than 5. This error is lower than the uncertainty due to parameter as. A greater value of w would
improve the precision of the result, but the substantial gain in precision, which requires time-consuming
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Fig. 3. Influence of the size of the closed section at the interface.

computations, would be counterbalanced by a excessively great uncertainty (25%) due to ag, which is
difficult to reduce. Because forces acting in the structure dramatically increase when @ is lower than
5, a value of w lower than 5 would be likely to induce an error greater than the initial 25%. Thus, it

can be concluded that the choice of @ = 5 appears to be a good compromise for defining the size of
the snow elements.

In later sections, values w = 5 and ag = 1 will be adopted.
4.3. Influence of the exponent o,

Further simulations were carried out with the exponent ;.. varying in the range of [0.1-5]. As discussed
in Part I, the lack of knowledge on the bond-scale structure of the ice makes it difficult to calibrate the
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Fig. 4. Influence of the exponent o;.
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exponent a;... Nevertheless, it seems reasonable to consider that o, can vary in the range of [1-5] (Gag-
liardini and Meyssonnier, 1999). In particular, in Glen’s law for creep, ¢ =~ 3. Fig. 4 shows that the smaller
this exponent is, the greater the influence of i is, typically o < 1. Furthermore, denoting F’ pole the value
of Fe when ai. =1, it must be noted that the relative variation of F,e, which can defined as
|Fpole — fpole’ /F pote> does not exceed 10% when o, varies in the usual range of [1-5]. This is an interesting
result; indeed, in as much as it can be assumed that no failure can occur inside grain bonds, this result
establishes that the influence of the exponent o, remains very small, and lower than the uncertainty caused
by other parameters such as ag . This justifies using a linear local constitutive law to model the mechanical
interaction between a snowpack and a flexible structure. In this kind of problem, considering the
assumptions used to describe the macroscopic strain field of the snowpack, more complex local constitutive
models are not likely to bring a significant improvement in the final result. Thus, for the further simula-
tions, values w = 5, as = 1 and o, = 1 will be adopted.

5. First elements of validation

During the winter of 1999-2000, several snow avalanche net structures were monitored in the French
Alps. Force sensors were mounted in order to record the changes in the forces acting on the upstream
anchors. The analysis of the experimental results showed that those at the Flaine (Haute-Savoie) site
provided the most reliable and useable results; the data from this site were consequently chosen for analysis.
In what follows, the situation observed on 12 April 2000 is considered. The height of the snow mantel was
equal to 3.58 m, and the average density was equal to 560 kg/m?. These values were measured 4 m upstream
from the poles. Fig. 5 shows the geometrical description of the structure.

To perform the numerical simulation, a single-layer snowpack was studied, with N} = 1000 and 7. = 5.
The snow elements were 0.02 m high by 0.02 m wide by 11 m long. The friction angle ¢, between the soil and
the snowpack was chosen equal to 20°. A comparison between experimental and numerical values of the
forces acting on the upstream anchors is presented in Table 1. A rather good agreement between experi-
mental and numerical values can be seen for the both internal and pre-external anchors (see Fig. 7, Part I).
However, a large divergence must be noted for the external anchors. Nevertheless, the small experimental
value recorded in the external anchor looks suspicious. Generally, the maximal force is located in the

Fig. 5. Geometrical configuration of the structure.

Table 1
Comparison of experimental and numerical results
Internal anchor Pre-external anchor External anchor
Experimental result (kN) 95 111 67
Numerical result (kN) (free lateral planes) 110 109 153

Numerical result (kIN) (blocked left lateral plane) 106 102 123
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external anchor (Margreth, 1995). This divergence is partly caused by the strong irregularities in topography
near the external anchor: the presence of a rocky crest is likely to influence the stabilization of the snowpack.
Indeed, the results are slightly better while the lateral plane is blocked. The next monitoring of a structure at
the Tignes site (Savoie, France), which is set up in a very smooth and regular area, should provide further
valuable experimental data beginning in 2004. At present, the good agreement for both the internal and the
pre-external anchors should be considered as a first element of validation.

The distribution of the pressure applied to an external pole is shown in Fig. 6. It can be noted that the
shape of this distribution is approximately linear from the ground surface up to 2 m in height. Above this
height, the pressure increases strongly. Interestingly, the uniform pattern of pressure applied to the poles,
required by the Swiss Guidelines (Margreth, 1990) for designing protective barriers, is not confirmed by the
proposed numerical simulations. Unfortunately, the poles were not monitored, so that this numerical result
cannot be compared to the experimental data. As the distribution of the pressure has a substantial influence
on the poles’ bending moment, it strongly governs the design of these poles. Further experimental inves-
tigations will therefore be carried out to make such data available in the future. Fig. 7 shows the dis-

Height (m)

0 2000 4000 6000 8000 10000 12000 14000
Pressure applied to the pole (Pa)

Fig. 6. Distribution of the pressure applied to the poles.
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Fig. 7. Displacement field into the snowpack.
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placement field of the snowpack in several planes parallel to the ground surface: at a 0.25 m depth, a 1.25m
depth and a 2.25 m depth. The displacements decreased with the depth and were equal to zero behind the
poles. Of course, it must be noted that this displacement field results from the assumptions concerning the
kinematics of the snow elements: in particular, they are perfectly rigid in compression, so that the dis-
placement field does not depend on x;.

6. An example of an advanced simulation

In order to show the capabilities of the computational software, a complete simulation will be described
in this section. Typical successive meteorological events are explained. The structure is composed of a line
of four poles. The height of the net sheet is equal to 4 m. Each pole, which is hollow, has a diameter of 168.3
mm and a wall thickness of 4.5 mm. The distance between two adjoining poles is 3.50 m. The slope above
the structure is 45°. The geometrical settings of the structure are described in Fig. 8.

As depicted in Fig. 9, two successive snow situations were analysed. First, a three-layer mantel was
considered, in which a recent snow layer and an old dense snow layer are separated by a thin layer. This
situation is typical of February in the French Alps. Second, a two-layer mantel was examined, whose snow
layers were very dense. This is the usual spring situation: the snowpack has been subjected to the effect of
melting and settlement. Even if the height of the mantel is lower in the second case, the total weight of the
mantel remains unchanged. Although this feature may not occur, it was adopted in order to examine the
sole influence of the height of the mantel.

To perform the two numerical simulations, the number of grain bonds in a RVE was fixed at 1000. The
snow elements measured 0.02 m high by 0.02 m wide by 25 m long. The friction angle ¢, between the soil
and the snowpack was chosen equal to 20°. During densification, the coordination number rises; thus, this
parameter should vary with layers. Nevertheless, for the sake of simplicity, a simplistic choice of n. was

Fig. 8. Geometrical configuration of the structure.

im «— p= 300 Kg/m®

«— pP= 250Kg/m

0.1m
«— p= 425Kg/m
«— p= 400Kg/m
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Fig. 9. Changes in a layered mantel between February and April.
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Table 2
Forces acting in the anchors: comparison between February and April situations

Forces (kN)

Internal anchor Pre-external anchor External anchor
February situation 261 260 298
April situation 242 240 285

made: in the two upper layers of the first mantel (February), 7. = 3; in the other layers, in February or
April, as the density is greater than 400 kg/m?, i, = 5 (Brown and Edens, 1991).

Table 2 compares the forces acting in the anchors in the course of the two situations. It can be observed
that the forces are slightly greater in the first situation. Even if the weight of the mantel is identical for
the two scenarios, the first loading induces the strongest forces. That means that the forces acting on the
anchors are a function of the weight of the mantel, W = )_)", p,wh,L, but also of the total height of the
mantel, H = ;" h;. This can be expressed as follows:

F,(i) = fi(W,H) (25)

where F, (i) is the resulting force acting in the anchor 7, and f; is a non-linear operator that depends on the
position of the anchor (external, pre-external or internal anchor). Implicitly, this operator takes the final
strained geometrical configuration of the structure into account. The non-linearity of f; is mainly caused by
the geometrical non-linearities occurring in the course of the deformation of the structure.

Recent research (Gay and Nicot, 2001) has shown that the operator f; can be assessed using the fol-
lowing straightforward power law expression:

F,(i) = aW"H* (26)

withbx~1and 0 <c < 1.

For the case considered, F,(1) = 1.64W H°2! for both the internal and the pre-external anchors, and
F,(2) = 2.02W H"'? for the external anchors.

The comparison of the pressure applied to the poles is illustrated in Fig. 10. First, the curve corre-
sponding to the February situation shows that the presence of a thin light layer induces a strong decrease in
the pressure. Thus, because of the influence of the layering of the mantel, it is of great importance to have a

25} February situation 1
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Fig. 10. Distribution of the pressure applied to the poles.
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physical description that is as accurate as possible. Furthermore, it can be observed that the pressure
corresponding to the April situation is the greater of the two. Thus, the loading applied by a snowpack to
the poles seems to depend substantially on the height of the mantel. During the settlement of the snow
cover, if the total weight of the mantel remains unchanged, the pressure applied to the poles is likely to
increase dramatically. This makes it even more important to perform several simulations with different
successive realistic snow conditions in order to determine the most severe situation. Taking this situation
into account will provide an effective design of the protective structure. As depicted in Fig. 10, strong
oscillations occur in the pressure profile. These oscillations seem to be related to the discrete representation
of both the wire net and the snowpack. As the interaction between both the wire mesh and the snow
elements is modelled using a powerful kinematic condition, the velocity field within the snowpack is sub-
stantially discontinuous. As the pressure applied to the poles is computed from the velocity of the snow
elements which are in contact with those located upstream from the poles, the discontinuous nature of the
velocity field then directs oscillations in the pressure profile. Actually, the velocity field within the snowpack
is likely to be smoother, and discontinuities do not occur, except perhaps in the vicinity of the physical
discontinuities of the snowpack (interfaces between adjoining layers). So large oscillations therefore result
from the nature of the modelling system, but are not likely to correspond to a physical phenomenon.
Nevertheless, the simulated pressure profile brings some valuable mean information, which can be sufficient
to design the structure: further mathematical treatment (a filtering process) can be used in order to regu-
larize the profile.

7. Concluding remarks

The actual complexity that engineers face in assessing the loading applied by a snow mantel requires a
specific research program that will attempt to develop a coupled mechanical analysis of both the structure
and the snow mantel by scientifically analyzing the interaction between the snow mantel and the structure.
This paper has proposed an original approach based on the discrete element method (Cundall and Roger,
1992) to model both the structure and the snowpack. Because of the particular form of the displacement
field within the snowpack, it has been shown that this type of model was well adapted. As the equilibrium
state between the snowpack and the structure does not depend on the mechanical parameters used in the
constitutive model, a useful double time-step numerical scheme was developed, allowing computation time
to be greatly optimized.

This complete modelling was integrated into computational software, allowing avalanche net structures
to be designed according to snow conditions. Thus, various snow conditions, which can be related to
meteorological scenarios, can be simulated.

Finally, the forces acting on a protective structure can be understood as the final result of a chain
gathering complex phenomena: (i) snowfalls; (ii) physical changes in the snowpack in interaction with the
climatic conditions, the ground surface, and a flexible structure; (iii) the mechanical behaviour of a flexible
structure. As a direct experimental study of the snowpack remains a very difficult task, a structure for
indirectly obtaining information related to the snowpack appears to be extremely useful. In these condi-
tions, the net structure functions as a macroscopic but relevant sensor. This paper presents the first step of
this original approach.
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